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Abstract. We extract the B, D, and D∗ meson wave functions from the CLEO data of the decays B → K∗γ
and B → D(∗)π in the perturbative QCD framework. In this formalism, various logarithmic corrections
are organized to give the Wilson evolution from the W boson mass down to the characteristic scale of a
decay process, which is of order of the b quark mass, and the Sudakov evolution from the characteristic
scale to a lower factorization scale of order ΛQCD. With large logarithms organized, the b quark decay
amplitudes are evaluated reliably in perturbation theory. Below the factorization scale, QCD dynamics is
regarded as being nonperturbative, and absorbed into meson wave functions. Because of their universality,
the heavy-meson wave functions determined in this work, can be employed to make predictions of other
decay modes. We also observe that the dependence of heavy meson wave functions on intrinsic parton
transverse momenta plays an important role in the explanation of data.

1 Introduction

Recently, a PQCD factorization theorem for exclusive
heavy-meson decays has been developed by one of us [1],
and applied to the nonleptonic B → D(∗)π(ρ) decays [2]
and the penguin-induced radiative B → K∗γ decays [3].
These decays involve three scales: the W boson mass MW ,
at which the matching conditions of the effective weak
Hamiltonian to the full Hamiltonian are defined, the typ-
ical scale t of a hard amplitude, which reflects the specific
dynamics of a heavy-meson decay, and the factorization
scale 1/b, with b being the conjugate variable of parton
transverse momenta. The dynamics below 1/b is regarded
as being completely nonperturbative, and parametrized
into meson wave functions φ(x, b), x being the momentum
fraction. Above the factorization scale, PQCD is reliable
and radiative corrections produce two types of large log-
arithms: ln(MW /t) and ln(tb). The former are summed
by renormalization-group (RG) equations to give the evo-
lution from MW down to t described by the Wilson co-
efficients c(t), while the latter are summed to give the
evolution from t to 1/b.

There also exist double logarithms ln2(Pb) from the
overlap of collinear and soft divergences in radiative cor-
rections to meson wave functions, P being the dominant
light-cone component of a meson momentum. The resum-
mation of these double logarithms leads to a Sudakov form
factor exp[−s(P, b)], which suppresses the long-distance
contributions in the large b region, and vanishes as b =
1/Λ, Λ ≡ ΛQCD being the QCD scale. This factor guar-
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antees the applicability of PQCD around the energy scale
of the b quark mass, which is our motivation to develop a
PQCD formalism for heavy-meson decays. For a detailed
derivation of the relevant Sudakov form factors, we refer
the readers to [4,5]. With all the large logarithms orga-
nized, the remaining finite contributions are absorbed into
the hard b quark decay amplitude H(t).

We do not claim that contributions to B meson de-
cays are purely perturbative, but that perturbative con-
tributions are important, and it makes sense to compare
PQCD predictions with experimental data. It has been
shown that about 70% of the full contribution to the decay
B → Dπ arises from the region with αs < 1 (αs/π < 0.3)
in the above PQCD formalism [5]. Since energy releases
involved in B meson decays are located in the transition
region from nonperturbative to perturbative QCD accord-
ing to the analysis in [6], nonperturbative approaches, such
as QCD sum rules [7], also give sizeable contributions. In
fact, B meson decays are a subject on which perturbative
and nonperturbative approaches complement each other.

A three-scale factorization formula for exclusive B me-
son decays possesses the typical expression,

c(t) ⊗ H(t) ⊗ φ(x, b) ⊗ exp

[
− s(P, b)

−2
∫ t

1/b

dµ̄

µ̄
γ(αs(µ̄))

]
, (1)

where the exponential involving the quark anomalous di-
mension γ = −αs/π describes the evolution from t to 1/b
mentioned above. All the convolution factors in the above
formula, except for the wave functions φ(x, b), are calcu-
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lable in perturbation theory. The wave functions, though
not calculable, are universal, since they absorb the long-
distance dynamics, which is insensitive to the specific de-
cay of the b quark into light quarks with large energy re-
lease. The universality of nonperturbative wave functions
is the fundamental concept of PQCD factorization theo-
rems. It can be proved rigorously, but the proof is not the
point of this work, and will not be supplied here.

Because of the universality, the strategy of PQCD fac-
torization theorems is as follows: evaluate all perturbative
factors for some decay modes, and adjust the wave func-
tions such that predictions from the corresponding factor-
ization formulas match experimental data. At this stage,
the nonperturbative wave functions are determined up to
the twists and orders of the coupling constant, at which
the factorization formulas are constructed. Then evalu-
ate all the perturbative factors for another decay mode.
Input the extracted wave functions into the factorization
formulas of the same twist and orders, and make predic-
tions. With this strategy, PQCD factorization theorems
are model independent and possess a predictive power.

For light-meson wave functions, such as those of π,
ρ, and K(∗) mesons, various experimental data and QCD
sum rules [8–10] have provided reliable information. For
heavy mesons, such as B and D(∗), the knowledge is still
poor. In this paper we shall determine the heavy meson
wave functions from the available experimental data. Since
two-body nonleptonic decays involve the maximal energy
release that guarantees the applicability of PQCD, and
their data are abundant, the decays B → D(∗)π are ideal
processes for extracting the B and D(∗) meson wave func-
tions. However, both of the B and D(∗) wave functions
are unknown, and thus we need the additional data of the
B → K∗γ decay [11] in order to determine the B meson
wave function first. After determining the B meson wave
function, we apply it to the analysis of the B → D(∗)π
decays and obtain the D and D∗ meson wave functions.

The factorization formulas for the B → K∗γ and B →
D(∗)π decays are presented in Sect. 2 and Sect. 3, respec-
tively. The numerical analysis is performed in Sect. 4. Sec-
tion 5 is the conclusion.

2 The B → K∗γ decay

The effective Hamiltonian for the flavor-changing b → s
transition is given by [12]

Heff = −GF√
2

V ∗
tsVtb

8∑
i=1

Ci(µ)Oi(µ), (2)

with

O1 = (s̄icj)V −A(c̄jbi)V −A ,

O2 = (s̄ici)V −A(c̄jbj)V −A ,

O3 = (s̄ibi)V −A

∑
q

(q̄jqj)V −A ,

O4 = (s̄ibj)V −A

∑
q

(q̄jqi)V −A ,

O5 = (s̄ibi)V −A

∑
q

(q̄jqj)V +A ,

O6 = (s̄ibj)V −A

∑
q

(q̄jqi)V +A ,

O7 =
e

4π2 s̄iσ
µν(msPL + mbPR)biFµν ,

O8 = − g

4π2 s̄iσ
µν(msPL + mbPR)T a

ijbjG
a
µν , (3)

i, j being the color indices. It has been observed that the
contributions to the B → K∗γ decay rate come mainly
from the operators O2, O7 and O8 [3]. O2 contributes via a
charm-quark loop, from which the photon and an off-shell
gluon are radiated. This off-shell gluon is then reabsorbed
by the spectator quark in the B or K∗ meson. This b →
sg∗γ vertex has been computed in [3,13].

The momenta of the B and K∗ mesons in light-cone
coordinates are written as P1 = (MB/

√
2)(1, 1,0T )

and P2 = (MB/
√

2)(1, r2,0T ), respectively, with
r = MK∗/MB . The B meson is at rest with the above
parametrization of momenta. We define the momenta of
light valence quarks in the B and K∗ mesons as k1 and
k2, respectively. k1 has a minus component k−

1 , giving the
momentum fraction x1 = k−

1 /P−
1 , and small transverse

components k1T . k2 has a large plus component k+
2 , giv-

ing x2 = k+
2 /P+

2 , and small k2T . The photon momentum
is then P3 = P1 − P2, whose nonvanishing component is
only P−

3 .
The B → K∗γ decay amplitude can be decomposed as

M = ε∗
γ · ε∗

K∗MS + iεµρ+−ε∗µ
γ ε∗ρ

K∗MP , (4)

with εγ and εK∗ the polarization vectors of the photon
and of the K∗ meson, respectively. The total rate of the
B → K∗γ decay is given by

Γ =
1 − r2

8πMB
(|MS |2 + |MP |2) . (5)

We further decompose MS and MP as

M i = M i
2 + M i

7 + M i
8 , (6)

where i = S or P , and the terms on the right-hand side
represent the contributions from the operators O2, O7,
and O8, respectively.

The Sudakov resummation of the large logarithmic
corrections to the B meson wave function φB and to the
K∗ meson wave function φK∗ leads to the exponentials
exp(−SB) and exp(−SK∗), respectively, with the expo-
nents

SB(t) = s(x1P
−
1 , b1) + 2

∫ t

1/b1

dµ̄

µ̄
γ(αs(µ̄)) ,

SK∗(t) = s(x2P
+
2 , b2) + s((1 − x2)P+

2 , b2)

+2
∫ t

1/b2

dµ̄

µ̄
γ(αs(µ̄)) . (7)

The variable b1 (b2), conjugate to the parton transverse
momentum k1T (k2T ), represents the transverse extent of
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the B (K∗) meson. The exponent s is [14,15]

s(Q, b) =
∫ Q

1/b

dµ

µ

[
ln
(

Q

µ

)
A(αs(µ)) + B(αs(µ))

]
, (8)

where the anomalous dimensions A to two loops and B to
one loop are

A = CF
αs

π
+
[
67
9

− π2

3
− 10

27
nf +

2
3
β0 ln

(
eγE

2

)](αs

π

)2
,

B =
2
3

αs

π
ln
(

e2γE−1

2

)
, (9)

with CF = 4/3 a color factor and γE the Euler constant.
The one-loop expression of the running coupling constant,

αs(µ) =
4π

β0 ln(µ2/Λ2)
, (10)

is substituted into (8) with the coefficient β0 = (33 −
2nf )/3. The Sudakov factor in (7) suppresses long-distance
contributions from the large b region, and improves the
applicability of PQCD to B meson decays.

We quote the factorization formulas for M i
l [3] in terms

of the overall factor

Γ (0) =
GF√

2
e

π
V ∗

tsVtbCF M5
B . (11)

The amplitudes contributed by O2 are written as

MS
2 = Γ (0) 4

3

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1

0
dx1dx2

∫ 1/Λ

0
bdb

×φB(x1, b)φK∗(x2)
×αs(t2)c2(t2) exp[−SB(t2) − SK∗(t2)]b1=b2=b

×[(1 − r2 + 2rx2 + 2x1)y − (rx2 + 3x1)(1 − x)]

× (1 − r)(1 − r2)x2x

xy(1 − r2)x2M2
B − M2

c

H2

(
Ab,

√
|B2

2 |b
)

, (12)

MP
2 = Γ (0) 4

3

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1

0
dx1dx2

∫ 1/Λ

0
bdb

×φB(x1, b)φK∗(x2)
×αs(t2)c2(t2) exp[−SB(t2) − SK∗(t2)]b1=b2=b

× [((1 − r)(1 − r2) + 2r2x2 + 2x1
)
y

− (r(1 + r)x2 + (3 − r)x1) (1 − x)] (13)

× (1 − r2)x2x

xy(1 − r2)x2M2
B − M2

c

H2

(
Ab,

√
|B2

2 |b
)

,

with

A2 = x1x2M
2
B ,

B2
2 = x1x2M

2
B − y

1 − x
(1 − r2)x2M

2
B +

M2
c

x(1 − x)
,

t2 = max
(

A,
√

|B2
2 |, 1/b

)
, (14)

and Mc being the charm quark mass. t2 is the character-
istic scale of the hard amplitude

H2

(
Ab,

√
|B2

2 |b
)

= K0(Ab) − K0

(√
|B2

2 |b
)

, B2
2 > 0 ,

= K0(Ab) − i
π

2
H

(1)
0

(√
|B2

2 |b
)

, B2
2 < 0 . (15)

The amplitudes from O7 with a hard gluon attaching
the quarks in the B meson or in the K∗ meson are

MS
7 = −MP

7 = Γ (0)2
∫ 1

0
dx1dx2

∫ 1/Λ

0
b1db1b2db2

×φB(x1, b1)φK∗(x2) (16)
×αs(t7)C7(t7) exp[−SB(t7) − SK∗(t7)]

×(1 − r2)

{
rH

(a)
7

(
Ab2,

√
|B2

7 |b1,
√

|B2
7 |b2

)

+[1 + r + (1 − 2r)x2]H
(b)
7 (Ab1, C7b1, C7b2)

}
,

with

B2
7 = (x1 − r2)m2

B , C2
7 = x2m

2
B ,

t7 = max
(

A,
√

|B2
7 |, C7, 1/b1, 1/b2

)
. (17)

The hard functions are given by

H
(a)
7

(
Ab2,

√
|B2

7 |b1,
√

|B2
7 |b2

)

= K0(Ab2)h
(√

|B2
7 |b1,

√
|B2

7 |b2

)
, B2

7 > 0 ,

K0(Ab2)h′
(√

|B2
7 |b1,

√
|B2

7 |b2

)
, B2

7 < 0 , (18)

with

h = θ(b1 − b2)K0

(√
|B2

7 |b1

)
I0

(√
|B2

7 |b2

)
+ (b1 ↔ b2) ,

h′ = i
π

2

[
θ(b1 − b2)H

(1)
0

(√
|B2

7 |b1

)
J0

(√
|B2

7 |b2

)

+(b1 ↔ b2)
]

, (19)

and

H
(b)
7 (Ab1, C7b1, C7b2) = K0(Ab1)h(C7b1, C7b2) . (20)

The relation MS
7 = −MP

7 reflects the equality of the
parity-conserving and parity-violating contributions in-
duced by O7.

The amplitudes from O8, where the photon is radiated
by each quark in the B and K∗ mesons, are

MS
8 = −Γ (0) 1

3

∫ 1

0
dx1dx2

∫ 1/Λ

0
b1db1b2db2
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×φB(x1, b1)φK∗(x2)
×αs(t8)C8(t8) exp[−SB(t8) − SK∗(t8)]

×
{

(1 − r2 + x1)(rx2 + x1)H
(a)
8 (Ab2, B8b1, B8b2)

+[(2 − 3r)x2 − x1 + r(1 − x2)

×(rx2 − 2rx1 + 3x1)]H
(b)
8 (Ab1, C8b1, C8b2)

+(1 + r)(1 − r2)[(1 + r)x1 − rx2]

×H
(c)
8

(√
|A′2|b2, D8b1, D8b2

)
−[(1 − r2)((1 − r2)(2 − x2) + (1 + 3r)

×(2x2 − x1)) + 2r2x2(x2 − x1)]

×H
(d)
8

(√
|A′2|b1, E8b1, E8b2

)}
, (21)

MP
8 = Γ (0) 1

3

∫ 1

0
dx1dx2

∫ 1/Λ

0
b1db1b2db2

×φB(x1, b1)φK∗(x2)
×αs(t8)C8(t8) exp[−SB(t8) − SK∗(t8)]

×
{

(1 − r2 + x1)(rx2 + x1)H
(a)
8 (Ab2, B8b1, B8b2)

+[(2 − 3r)x2 − x1 − r(1 − x2)

×(rx2 − 2rx1 + 3x1)]H
(b)
8 (Ab1, C8b1, C8b2)

+(1 − r)(1 − r2)[(1 + r)x1 − rx2]

×H
(c)
8

(√
|A′2|b2, D8b1, D8b2

)
−[(1 − r2)((1 − r2)(2 + x2) − (1 − 3r)x1)

−2r2x2(x2 − x1)]H
(d)
8

×
(√

|A′2|b1, E8b1, E8b2

)}
, (22)

with

A′2 = (1 − r2)(x1 − x2)M2
B , B2

8 = (1 − r2 + x1)M2
B ,

C2
8 = (1 − x2)M2

B , D2
8 = (1 − r2)x1M

2
B

E2
8 = (1 − r2)x2M

2
B ,

t8 = max
(
A,
√

|A′2|, B8, C8, D8, E8, 1/b1, 1/b2

)
. (23)

The hard functions are given by

H
(a)
8 (Ab2, B8b1, B8b2) = H

(b)
7 (Ab2, B8b1, B8b2) ,

H
(b)
8 (Ab1, C8b1, C8b2) = K0(Ab1)h′(C8b1, C8b2)

H
(c)
8

(√
|A′2|b2, D8b1, D8b2

)
= K0

(√
|A′2|b2

)
h(D8b1, D8b2) , A′2 ≥ 0 ,

i
π

2
H

(1)
0

(√
|A′2|b2

)
h(D8b1, D8b2) , A′2 < 0 ,

H
(d)
8

(√
|A′2|b1, E8b1, E8b2

)
= K0

(√
|A′2|b1

)
h′(E8b1, E8b2) , A′2 ≥ 0 ,

i
π

2
H

(1)
0

(√
|A′2|b1

)
h′(E8b1, E8b2) , A′2 < 0 .(24)

Compared with the factorization formulas presented
in [3], we have included the intrinsic (nonperturbative) b
dependence [16] of the B meson wave function φB . The
b dependence appearing in the Sudakov factor is regarded
as being perturbative. The intrinsic b dependence, provid-
ing additional suppression in the large b region, is more
essential for the B meson, in which soft dynamics dom-
inates and Sudakov suppression is weaker. This depen-
dence for the fast recoiling K∗ meson is less important
and neglected. In fact, the intrinsic b dependence of the
K∗ meson wave function is not yet fully understood. For
an analysis of a single process such as the decay B → K∗γ
[3], the effect of the intrinsic b dependence is not signifi-
cant, since it can always be compensated by adjusting the
x dependence of φB under the current accuracy of exper-
imental data. However, this dependence turns out to be
essential, when one intends to explain data of several B
meson decay modes simultaneously. This observation will
become clear in Sect. 4.

Another modification is that we have chosen a single
hard scale t for all diagrams contributing to an amplitude,
which is defined as the maximal scale appearing in these
diagrams. In [3] t is chosen as the hard gluon momentum
of each diagram, and thus differs among various diagrams
contributing to an amplitude. This modification simplifies
the factorization formulas for the decay B → K∗γ. The
difference between these two schemes arises at the level of
next-to-next-to-leading logarithms, if B meson decays are
indeed dominated by hard gluon exchanges.

3 The B → D(∗)π decays

In this section we quote the factorization formulas for the
nonleptonic B → D(∗)π decays, whose effective Hamilto-
nian is given by

Heff =
GF√

2
V ∗

udVcb[C1(µ)O1(µ) + C2(µ)O2(µ)] , (25)

with the four-fermion operators

O1 = (d̄iui)V −A(c̄jbj)V −A ,

O2 = (d̄iuj)V −A(c̄jbi)V −A .
(26)

Note the interchange of the definitions of O1 and O2 com-
pared with those in (2). Similarly, we assign the momenta
of the B and D(∗) mesons as P1 = (MB/

√
2)(1, 1,0T )

and P2 = (MB/
√

2)(1, r2,0T ), respectively, with
r = MD(∗)/MB , MD(∗) being the mass of the D(∗) meson.
ε∗ is the polarization vector of the D∗ meson. The momen-
tum fractions x1 and x2, and the transverse momenta k1T

and k2T are defined in a similar way. The pion momen-
tum P3 = P1 − P2 is the same as the photon momentum
in Sect. 2. One of its valence quark carries the fractional
momentum x3P

−
3 , and small transverse momenta k3T .
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In the present analysis we regard the D(∗) meson as a
heavy meson. Hence, the Sudakov form factor exp(−SD(∗))
from the resummation of the double logarithmic correc-
tions to the D(∗) meson wave function φD(∗) has the same
expression as exp(−SB) but with different kinematical
variables. The Sudakov form factor exp(−Sπ) associated
with the pion wave function φπ contains the exponent [17]

Sπ(t) = s(x3P
−
3 , b3) + s((1 − x3)P−

3 , b3)

+2
∫ t

1/b3

dµ̄

µ̄
γ(αs(µ̄)) . (27)

The decay rates of B → D(∗)π have the expression

Γi =
1

128π
G2

F |Vcb|2|Vud|2M3
B

(1 − r2)3

r
|Mi|2 , (28)

where i = 1, 2, 3, and 4 denote the modes B− → D0π−,
B̄0 → D+π−, B− → D∗0π−, and B̄0 → D∗+π−, respec-
tively. The decay amplitudes Mi are written as

M1 = fπ[(1 + r)ξ+ − (1 − r)ξ−] + fDξint

+Mext + Mint , (29)
M2 = fπ[(1 + r)ξ+ − (1 − r)ξ−] + fBξexc

+Mext + Mexc , (30)

M3 =
1 + r

2r
fπ[(1 + r)ξA1 − (1 − r)(rξA2 + ξA3)]

+fD∗ξ∗
int + M∗

ext + M∗
int , (31)

M4 =
1 + r

2r
fπ[(1 + r)ξA1 − (1 − r)(rξA2 + ξA3)]

+fBξ∗
exc + M∗

ext + M∗
exc , (32)

where fB , fD(∗) , and fπ are the B meson, D(∗) meson,
and pion decay constants, respectively. The form factors
ξi, i = +, −, V , A1, A2, and A3, denote the factorizable
external W -emission contributions. The form factors ξ

(∗)
int

and ξ
(∗)
exc denote the factorizable internal W -emission and

W -exchange contributions, respectively. The amplitudes
M(∗)

ext, M(∗)
int , and M(∗)

exc represent the nonfactorizable ex-
ternal W -emission, internal W -emission, and W -exchange
contributions, respectively.

The form factors ξi, i = +, A1 and A3, and ξj , j = −
and A2, are given by

ξi = 16πCF

√
rM2

B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

×φB(x1, b1)φD(∗)(x2, b2)
×αs(t)a1(t) exp[−SB(t) − SD(∗)(t)]
×[(1 + ζix2r)h(x1, x2, b1, b2, m)

+(r + ζ ′
ix1)h(x2, x1, b2, b1)] , (33)

ξj = 16πCF

√
rM2

B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

×φB(x1, b1)φD(∗)(x2, b2)αs(t)a1(t)
× exp[−SB(t) − SD(∗)(t)][ζjx2rh(x1, x2, b1, b2)

+ζ ′
jx1h(x2, x1, b2, b1)] , (34)

with the constants [18]

ζ+ = ζ ′
+ =

1
2

[
η − 3

2
+
√

η − 1
η + 1

(
η − 1

2

)]
,

ζ− = −ζ ′
− = −1

2

[
η − 1

2
+
√

η + 1
η − 1

(
η − 3

2

)]
,

ζA1 = −2 − η −
√

η2 − 1
2(η + 1)

, ζ ′
A1

= − 1
2(η + 1)

,

ζA2 = 0 , ζ ′
A2

= −1 − η√
η2 − 1

,

ζA3 = −1
2

− η − 2

2
√

η2 − 1
, ζ ′

A3
=

1

2
√

η2 − 1
, (35)

where the velocity transfer η takes the maximal value
ηmax = (1 + r2)/(2r) here. The form factors ξ

(∗)
int and ξ

(∗)
exc

are written as

ξ
(∗)
int = 16πCF

√
rM2

B

∫ 1

0
dx1dx3

∫ ∞

0
b1db1b3db3

×φB(x1, b1)φπ(x3)
×αs(tint)a2(tint) exp[−SB(tint) − Sπ(tint)]
× [(1 + x3(1 − r2))hint(x1, x3, b1, b3, mint)

+ζ
(∗)
int x1r

2hint(x3, x1, b3, b1, mint)
]

, (36)

ξ(∗)
exc = 16πCF

√
rM2

B

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3

×φD(∗)(x2, b2)φπ(x3)
×αs(texc)a2(texc) exp[−SD(∗)(texc) − Sπ(texc)]

×
[
(x3(1 − r2) − ζ(∗)

excr
2)hexc(x2, x3, b2, b3, mexc)

−x2hexc(x3, x2, b3, b2, mexc)
]

, (37)

with the constants ζint = ζexc = −ζ∗
int = −ζ∗

exc = 1.
In (33), (34), (36), and (37) the Wilson coefficients a1

and a2 are defined by

a1 = C1 +
C2

Nc
, a2 = C2 +

C1

Nc
, (38)

with Nc = 3 the number of colors. The functions h’s,
obtained from the Fourier transformation of the lowest-
order H, are given by

h(x1, x2, b1, b2, m) = K0 (
√

x1x2mb1) [θ(b1 − b2)
K0 (

√
x2mb1) I0 (

√
x2mb2)

+θ(b2 − b1)K0 (
√

x2mb2) I0 (
√

x2mb1)] , (39)
hint(x1, x3, b1, b3, mint) = h(x1, x3, b1, b3, mint) , (40)

hexc(x2, x3, b2, b3, mexc) =
π2

4
H

(1)
0 (

√
x2x3mexcb2)

×
[
θ(b2 − b3)H

(1)
0 (

√
x3mexcb2)

×J0 (
√

x3mexcb3) + θ(b3 − b2)H
(1)
0 (

√
x3mexcb3)

×J0 (
√

x3mexcb2)
]
, (41)
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with m = M2
B and mint = mexc = (1 − r2)M2

B . The hard
scales t are chosen as

t = max(
√

x1m,
√

x2m, 1/b1, 1/b2) , (42)
tint = max(

√
x1mint,

√
x3mint, 1/b1, 1/b3) , (43)

texc = max(
√

x2mexc,
√

x3mexc, 1/b2, 1/b3) . (44)

For the nonfactorizable amplitudes, the factorization
formulas involve the kinematic variables of all the three
mesons, and the Sudakov exponent is given by S = SB +
SD(∗) +Sπ. The integration over b3 can be performed triv-
ially, leading to b3 = b1 or b3 = b2. Their expressions are

M(∗)
ext = 32π

√
2NCF

√
rM2

B

∫ 1

0
[dx]

∫ ∞

0
b1db1b2db2

×φB(x1, b1)φD(∗)(x2, b2)φπ(x3)

×αs(tb)
C2(tb)

N
exp[−S(tb)|b2=b1,b3=b2 ]

×
{

[x3(1 − r2) − x1 − ζ
(∗)
b x2(r − r2)]h(1)

b (xi, bi)

−[x3(1 − r2) − x1 + x2]h
(2)
b (xi, bi)

}
, (45)

M(∗)
int = 32π

√
2NCF

√
rM2

B

∫ 1

0
[dx]

∫ ∞

0
b1db1b2db2

×φB(x1, b1)φD(∗)(x2, b2)φπ(x3)

×αs(td)
C1(td)

N
exp[−S(td)|b3=b1 ]

×
{

[x1 − x2 − x3(1 − r2)]h(1)
d (xi, bi)

−[(x1 + x2)(1 + ζ
(∗)
d r2) − 1]h(2)

d (xi, bi)
}

,(46)

M(∗)
exc = 32π

√
2NCF

√
rM2

B

∫ 1

0
[dx]

∫ ∞

0
b1db1b2db2

×φB(x1, b1)φD(∗)(x2, b2)φπ(x3)

×αs(tf )
C1(tf )

N
exp[−S(tf )|b3=b2 ]

×
{

[x3(1 − r2) − ζ
(∗)
f (x1 − x2)r2]h(1)

f (xi, bi)

−[(x1 + x2)(1 + ζ
(∗)
f r2)

−ζ
(∗)
f r2]h(2)

f (xi, bi)
}

, (47)

with the definition [dx] ≡ dx1dx2dx3. The constants are
ζb,d,f = −ζ∗

b,d,f = 1.
The functions hj , j = 1 and 2, appearing in (45)-(47),

are written as

h
(j)
b = [θ(b1 − b2)K0 (BMBb1) I0 (BMBb2)

+θ(b2 − b1)K0 (BMBb2) I0 (BMBb1)]

×
(

K0(BjMBb2) for B2
j ≥ 0

iπ
2 H

(1)
0 (
√

|B2
j |MBb2) for B2

j ≤ 0

)
, (48)

h
(j)
d = [θ(b1 − b2)K0 (DMBb1) I0 (DMBb2)

+θ(b2 − b1)K0 (DMBb2) I0 (DMBb1)]

×
(

K0(DjMBb2) for D2
j ≥ 0

iπ
2 H

(1)
0 (
√

|D2
j |MBb2) for D2

j ≤ 0

)
, (49)

h
(j)
f = i

π

2

[
θ(b1 − b2)H

(1)
0 (FMBb1)J0 (FMBb2)

+θ(b2 − b1)H
(1)
0 (FMBb2)J0 (FMBb1)

]

×
(

K0(FjMBb1) for F 2
j ≥ 0

iπ
2 H

(1)
0 (
√

|F 2
j |MBb1) for F 2

j ≤ 0

)
, (50)

with the variables

B2 = x1x2 ,

B2
1 = x1x2 − x2x3(1 − r2) ,

B2
2 = x1x2(1 + r2) − (x1 − x2)(1 − x3)(1 − r2) ,

D2 = x1x3(1 − r2) ,

D2
1 = F 2

1 = 3D(x1 − x2)x3(1 − r2) ,

D2
2 = (x1 + x2)r2 − (1 − x1 − x2)x3(1 − r2) ,

F 2 = x2x3(1 − r2) ,

F 2
2 = x1 + x2 + (1 − x1 − x2)x3(1 − r2) . (51)

The scales t(j) are chosen as

tb = max
(

BMB ,
√

|B2
1 |MB ,

√
|B2

2 |MB , 1/b1, 1/b2

)
,

td = max
(

DMB ,
√

|D2
1|MB ,

√
|D2

2|MB , 1/b1, 1/b2

)
,

tf = max
(

FMB ,
√

|F 2
1 |MB ,

√
|F 2

2 |MB , 1/b1, 1/b2

)
.

(52)

As before, we have included the intrinsic b dependence
for the B and D(∗) mesons, in which soft dynamics is more
important. This dependence for the fast recoiling pion is
also neglected, similar to the case of the K∗ meson, for
consistency. The scheme of a single hard scale t for all di-
agrams contributing to an amplitude has been adopted to
simplify the factorization formulas. We have also corrected
misprints in (51) appearing in [2].

4 Numerical analysis

In this section we determine the heavy-meson wave func-
tions by fitting the predictions from the factorization for-
mulas for the B → K∗γ and B → D(∗)π decays to the
CLEO data [11,19,20]

B(B → K∗γ) = (4.2 ± 0.8 ± 0.6) × 10−5 ,

B(B− → D0π−) = (5.0 ± 0.5 ± 0.2) × 10−3 ,

B(B̄0 → D+π−) = (3.1 ± 0.4 ± 0.2) × 10−3 ,

B(B− → D∗0π−) = (4.34 ± 0.33 ± 0.34 ± 0.18) × 10−3 ,

B(B̄0 → D∗+π−) = (2.81 ± 0.11 ± 0.21 ± 0.05) × 10−3 .

(53)
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We adopt GF = 1.16639 × 10−5 GeV−2, the CKM matrix
elements |Vcb| = 0.040 [5,18] and |Vud| = 0.974, the masses
MB = 5.28 GeV, MD = 1.87 GeV, and MD∗ = 2.01
GeV [21], and the B̄0 (B−) meson lifetime τB0 = 1.53
(τB− = 1.68) ps [22].

As the transverse extent b approaches zero, φ(x, b) re-
duces to the standard parton model φ(x), i.e., φ(x) =
φ(x, b = 0). The wave functions φi(x), i = B, D, D∗, K∗,
and π, satisfy the normalization∫ 1

0
φi(x)dx =

fi

2
√

6
, (54)

with the corresponding decay constants fi. We choose
fB = 180 MeV (in the convention fπ = 132 MeV), which is
reasonable according to the lattice calculations presented
in the literature [23]. For the wave function of the K∗
meson with transverse polarizations, we employ [10]

φK∗(x) =
√

6
2

fK∗x(1 − x)[1 + 0.6(1 − 2x)

+0.06(15(1 − 2x)2 − 1)] , (55)

with fK∗ = 185 MeV. As to the pion wave function, we
employ the asymptotic form,

φπ(x) =
√

6
2

fπx(1 − x) , (56)

which has been found to give predictions consistent with
the data of the πγ form factor [24].

For the B meson wave functions, we use the model [25]

φB(x, b) = NB

√
x(1 − x) exp

[
−1

2

(
xMB

ωB

)2

− ω2
Bb2

2

]
,

(57)

where NB is the normalization constant and ωB the shape
parameter. Another model with a flat profile [26]

φ′
B(x, b) =

N ′
Bbx2(1 − x)2√

M2
Bx + CBx(1 − x)

K1

×
(√

M2
Bx + CBx(1 − x)b

)
, (58)

gives predictions for the branching ratio of the B → K∗γ
decay, which are too small compared with the data. There-
fore, we shall not consider it in the numerical analysis
below. For the D(∗) meson wave functions, we adopt the
same model as of the B meson in (57), but with differ-
ent normalization constants ND(∗) and shape parameters
ωD(∗) ,

φD(∗)(x, b) = ND(∗)

√
x(1 − x)

× exp

[
−1

2

(
xMD(∗)

ωD(∗)

)2

− ω2
D(∗)b

2

2

]
.(59)

We shall determine 5 parameters ND(fD), ND∗(fD∗),
ωB , ωD, and ωD∗ from the data of the 5 processes in

0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

φ(
x)

φB(x)
φD(x)
φD*(x)
φK* (x)

Fig. 1. The B and D(∗) meson wave functions

(53), under the constraints fD(∗) > fB , which is reason-
able from the viewpoint of heavy quark symmetry. The
fitting procedures are as follows. Start with the K∗ meson
wave function in (55), and determine the B meson wave
function (i.e., the shape parameter ωB) from the data of
the decay B → K∗γ. The obtained B meson wave func-
tion is then employed to evaluate the branching ratios of
the charged and neutral B decays B → D(∗)π, from which
both parameters, ND(∗) and ωD(∗) , of the D(∗) meson wave
function can be extracted. We have tested the heavy me-
son wave functions without the intrinsic b dependence. It
turns out that the D(∗) meson wave function φD(∗)(x),
along with the B meson wave function φB(x) determined
from the B → K∗γ data, always lead to predictions for
the B → D(∗)π decays which exceed the data by a factor
3, no matter how φD(∗)(x) is adjusted under the constraint
fD(∗) > fB . These predictions are lowered only by intro-
ducing the intrinsic b dependence into heavy meson wave
functions, impling that the intrinsic b dependence is in-
deed essential.

It is easy to understand that the parameters ωD(∗)

control the difference between the charged and neutral
B meson decay rates. This fact is obvious from (29)-(32):
by varying ωD(∗) , the external W -emission contributions,
i.e., the B → D form factors change, while the internal
W -emission contributions, i.e., the B → π form factors
remain the same. The W -exchange and nonfactorizable
diagrams give smaller contributions than the W -emission
diagrams to the decays considered. Therefore, the charged
B decay rates, as a combination of the external and inter-
nal W -emission contributions, and the neutral B-meson
decay rates with the external W emissions as the main
contribution, vary differently with the change of ωD(∗) .

After a tedious numerical analysis, we determine the
meson wave functions,
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φB(x, b) = 1.44605
√

x(1 − x) exp

[
−1

2

(
xMB

0.462 GeV

)2

−1
2
(0.462 GeV)2b2

]
,

φD(x, b) = 0.218677
√

x(1 − x) exp

[
−1

2

(
xMD

0.8 GeV

)2

−1
2
(0.8 GeV)2b2

]
,

φD∗(x, b) = 0.202997
√

x(1 − x) exp

[
−1

2

(
xMD∗

0.8 GeV

)2

−1
2
(0.8 GeV)2b2

]
, (60)

which correspond to the decay constants fB = 180 MeV,
fD = 220 MeV, and fD∗ = 190 MeV, respectively. With
these heavy meson wave functions, we obtain

B(B → K∗γ) = 4.19 × 10−5 ,

B(B− → D0π−) = 4.74 × 10−3 ,

B(B̄0 → D+π−) = 3.50 × 10−3 ,

B(B− → D∗0π−) = 3.93 × 10−3 ,

B(B̄0 → D∗+π−) = 2.94 × 10−3 , (61)

which are consistent with the data in (53). Note that the
value ωB = 0.462 GeV is in good agreement with ωB = 0.4
GeV obtained in the oscillating quark model [25]. It indi-
cates that meson wave functions in PQCD factorization
theorems have absorbed nonperturbative dynamics in B
meson decays appropriately, and that remained dynamics,
collected by the hard quark-level amplitudes, is perturba-
tive. The x dependence of the extracted heavy meson wave
functions and of the K∗ meson wave function is displayed
in Fig. 1. As expected, the maximum of a heavy meson
wave function moves to the large x region as the meson
mass decreases.

5 Conclusion

In this paper we have extracted heavy meson wave func-
tions, as shown in (60), from the experimental data of the
B → K∗γ and B → D(∗)π decays. The extracted meson
decay constants fD and fD∗ , compared to fB , and the
behavior of the wave functions exhibited in Fig. 1 are all
reasonable. We have also confirmed that the intrinsic b
dependence of heavy meson wave functions, which makes
possible a simultaneous fit to the data of several decay
modes, is essential. Although the uncertainties of the data
are still large, such that wide ranges of the relevant pa-
rameters are allowed, we shall employ the obtained wave
functions to make predictions for other nonleptonic B me-
son decay modes, especially charmless decays. As the pre-
cision of data improves, the heavy meson wave functions
determined in our formalism will be more reliable. On the

other hand, we can also proceed with a global determina-
tion of the heavy meson wave functions by incorporating
more decay modes into the fitting procedures. These sub-
jects will be discussed elsewhere.
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